Revista Brasileira de Zootecnia (Nov 2021)

Polymorphism in the BIEC2-808543 locus and its association with growth curve in Brasileiro de Hipismo horse breed

  • Érica Cristina Xisto da Costa,
  • Ricardo Augusto Mendonça Vieira,
  • Leonardo Siqueira Glória,
  • Maria Amélia Menck Soares

DOI
https://doi.org/10.37496/rbz5020200214
Journal volume & issue
Vol. 50

Abstract

Read online

ABSTRACT Our objective was to evaluate whether the single nucleotide polymorphism (SNP) BIEC2-808543, identified in some horse breeds, also occurs in the Brasileiro de Hipismo (BH) breed. In addition, we verified if this SNP is related to the growth curve profile of these animals for the variables body mass, height at withers, and height at croup, using nonlinear mixed models. For the DNA isolation, we collected blood samples from 167 young BH horses. We obtained the genotypes of these animals using the polymerase chain reaction-restriction fragment length polymorphism technique. For the association studies of this polymorphism with the growth curve in foals, we selected three traits: body mass, height at withers, and height at croup. Polymorphism C/T exists in BH horses and is significantly associated with the evaluated traits. Animals that presented the TT genotype were smaller and lighter when compared with animals of the CT and CC genotypes. By the Akaike information criterion, the model that best described the growth curve for the body mass variable is the Brody model associated with the power of the mean variance function. For the height at withers variable, the best-fit model was von Bertalanffy, adjusted without polymorphism effect in parameter b, associated with the asymptotic variance. For the height at croup trait, the model that best described the growth curve was Brody model, associated with asymptotic variance. This polymorphism represents a good molecular marker. Nonlinear models are promising for describing growth curves in horses, particularly by the possibility of associating SNP effects to model parameters.

Keywords