Animal Biotelemetry (Sep 2021)

A comparison of methods for the long-term harness-based attachment of radio-transmitters to juvenile Japanese quail (Coturnix japonica)

  • Evan J. Buck,
  • Jeffery D. Sullivan,
  • Cody M. Kent,
  • Jennifer M. Mullinax,
  • Diann J. Prosser

DOI
https://doi.org/10.1186/s40317-021-00257-9
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background While the period from fledging through first breeding for waterbird species such as terns (e.g., genus Sterna, Sternula) is of great interest to researchers and conservationists, this period remains understudied due in large part to the difficulty of marking growing juveniles with radio transmitters that remain attached for extended periods. Methods In an effort to facilitate such research, we examined the impact of various combinations of harness types (backpack, leg-loop, and 3D-printed harnesses), harness materials (Automotive ribbon, Elastic cord, and PFTE ribbon), and transmitter types (center-weighted and rear-weighted) on a surrogate for juvenile terns, 28-day-old Japanese quail (Coturnix japonica; selected due to similarities in adult mass and downy feathering of juveniles), in a 30-day experiment. We monitored for abrasion at points of contact and tag gap issues via daily exams while also recording mass and wing cord as indices of growth. This study was designed to serve as an initial examination of the impacts of marking on the growth and development of young birds and does not account for any impacts of tags on movement or behavior. Results While we found that treatment (the specific combination of the transmitter type, harness type, and harness material) had no impact on bird growth relative to unmarked control birds (P ≥ 0.05), we did observe differences in abrasion and tag gap between treatments (P ≤ 0.05). Our results suggest that leg-loop harnesses constructed from elastic cord and backpack harnesses from PFTE ribbon are suitable options for long-term attachment to growing juveniles. Conversely, we found that automotive ribbon led to extensive abrasion with these small-bodied birds, and that elastic cord induced blisters when used to make a backpack harness. Conclusions While these results indicate that long-term tagging of juvenile birds is possible with limited impacts on growth, this work does not preclude the need for small-scale studies with individual species. Instead, we hope this provides an informed starting point for further exploration of this topic.

Keywords