Egyptian Journal of Biological Pest Control (Aug 2022)
Entomopathogenic bacteria Photorhabdus luminescens as natural enemy against the African migratory locust, Locusta migratoria migratorioides (Reiche & Fairmaire, 1849) (Orthoptera: Acrididae)
Abstract
Abstract Background The African Migratory Locust, Locusta migratoria migratorioides (Reiche & Fairmaire, 1849) (Orthoptera: Acrididae), is a major threat to agricultural crops and food security on a worldwide scale; hence, maintaining control over it is crucial. Photorhabdus luminescens bacteria can accomplish the efficient biocontrol agent criteria. As a result, the aim of this study was to assess the efficacy of the P. luminescens (EGAP3) strain and its cell-free filtrate against L. migratoria migratorioides, as well as to investigate changes in the activity of carbohydrates hydrolyzing enzymes, amylase, invertase, and trehalase in whole-body homogenates of the 5th nymphal instar under laboratory conditions and to investigate the histopathological changes in the midgut of the locust. Results The virulence of entomopathogenic bacteria was determined at different densities of 4 × 107, 4 × 106, 4 × 105, and 4 × 104 colony-forming units (CFU)/ml at different exposure times as well as different concentrations of its cell-free filtrate, undiluted cell-free filtrate (100, 50, 25, and 12.5%). The results indicated that higher-density cell suspension up to 4 × 107 cells.ml−1 and undiluted cell-free filtrate (100%) were the most effective insecticidal fluids, reaching up to 76.7 and 80%, respectively, after 7 days. The estimated LC50 value was 2.7 × 106 cells.ml−1 for bacteria, and the estimated LC50 value for cell-free filtrate was the 2nd dilution (50%). Conclusions The data clarified the toxicological and histopathological effects and carbohydrate hydrolyzing enzyme activities of the host insect L. migratoria migratorioides, following bacteria and cell-free filtrate infection; that provides an overview of the efficiency of bacteria and their cell-free filtrate on the host. In conclusion, P. luminescens (EGAP3) and its toxins can be an optimal option for bio-controlling of L. migratoria migratorioides.
Keywords