Nanomaterials (Mar 2022)
Probing Optical Nonlinearities of Unconventional Glass Nanocomposites Made of Ionic Liquid Crystals and Bimetallic Nanoparticles
Abstract
In this paper, we report the synthesis and characterization of unconventional nanocomposites made of bimetallic nanoparticles dispersed in a liquid crystal glass. Core-shell bimetallic nanoparticles (Ag/Au or Au/Ag) and Ag-Au bimetallic nanoalloys are synthesized using cadmium alkanoate glass-forming liquid crystals as nanoreactors. Optical spectra of the produced glassy nanocomposites exhibit a distinctive absorption peak due to a surface plasmon resonance. In addition, these unusual materials demonstrate a strong nonlinear–optical response probed by means of the Z-scan technique. The use of near-infrared (1064 nm) and visible (532 nm) nanosecond laser pulses reveal a variety of nonlinear–optical mechanisms that depend on the composition of the studied nanocomposites. Our results indicate that metal alkanoate-based glass-forming ionic liquid crystals with embedded plasmonic nanoparticles are promising, yet they are overlooked photonic nanomaterials suitable for optical and nonlinear-optical applications.
Keywords