Cogent Food & Agriculture (Dec 2024)
Acalypha indica aqueous leaf extract as potential nematicide against the root-knot nematode, Meloidogyne incognita: in vitro and molecular docking studies
Abstract
Root-knot nematode (RKN) (Meloidogyne incognita) is a major plant parasitic nematode that severely damages crops, leading to significant yield losses and substantial economic impact globally. This study aims to investigate an environmentally sustainable biological strategy for mitigating parasitic populations of the root-knot nematode, M. incognita. Specifically, the research focuses on assessing the nematicidal efficacy of Acalypha indica against M. incognita mortality and second-stage juveniles’ (J2) hatching under controlled in vitro conditions. A. indica leaf aqueous extract was applied at varying concentrations (250, 500, 750, and 1000 ppm) to J2s and egg masses of M. incognita. Notably, at 1000 ppm, a significant increase in J2 mortality and hatching inhibition was observed, while 250 ppm concentration showed the least favorable outcome; with mortality rates ranging from 22–82%. Chemical analysis via gas chromatography-mass spectroscopy (GC-MS) identified Benzoic acid, Cyclooctasiloxane, and 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris (trimethylsiloxy) tetrasiloxane as predominant compounds. The nematicidal activity of A. indica leaf extract was further validated through in silico molecular docking, revealing that benzoic acid, Cyclooctasiloxane, and 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris (trimethylsiloxy) tetrasiloxane bind to the ODR 3 protein of M. incognita with binding energies of −15.72, −8.91, and −7.35 kJ/mol, respectively. These findings hold promise for environmentally benign root-knot nematode management, contributing to improved soil health.
Keywords