Shock and Vibration (Jan 2004)
Transverse Vibration of Stiffened Plates with Cutouts Subjected to In-Plane Uniform Edge Loading at the Plate Boundary
Abstract
Vibration characteristics of stiffened plates with cutouts subjected to uni-axial in-plane uniform edge loading at the plate boundaries are investigated using the finite element method. The characteristic equations for the natural frequencies, buckling loads and their corresponding mode shapes are obtained from the equation of motion. The vibration frequencies and buckling load parameters for various modes of stiffened plates with cutouts have been determined for simply supported and clamped edge boundary conditions. In the structure modelling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. Numerical results are presented for a range of hole to plate width ratios of 0 to 0.8. The correlations of the natural frequencies and buckling parameters obtained by the present approach with those available in the literature are found to show good agreement.