International Journal of Nanomedicine (Aug 2012)

Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles

  • Yusuf M,
  • Khan RA,
  • Khan M,
  • Ahmed B

Journal volume & issue
Vol. 2012, no. default
pp. 4311 – 4322

Abstract

Read online

Mohammad Yusuf,1 Riaz A Khan,3 Maria Khan,2 Bahar Ahmed11Department of Pharmaceutical Chemistry, 2Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi, India; 3Department of Chemistry, Manav Rachna International University, National Capital Region, Aravali Hills, Faridabad, IndiaAbstract: β-Carotene has been established as a known free radical scavenger with chain-breaking antioxidant properties. It has been documented for the treatment of epileptic convulsions at a 200 mg/kg body weight dose. The reported pathogenesis for epileptic convulsions is oxidative stress. Hence, experimental epileptic convulsions via oxidative stress was induced in albino mice epileptic models (maximal electroshock seizure and pentylenetetrazole [PTZ]). A dose concentration equivalent to 2 mg/kg was efficaciously administered in the form of brain-targeted polysorbate-80-coated poly(d,l-lactide-co-glycolide) nanoparticles. The nanoparticles were prepared by solvent evaporation technique and further characterized for their physical parameters, in-vitro release kinetics, and in-vivo brain release via various standard methods. Normal β-carotene nanoparticles (BCNP) and polysorbate-80-coated β-carotene nanoparticles (P-80-BCNP) of 169.8 ± 4.8 nm and 176.3 ± 3.2 nm in size, respectively, were formulated and characterized. Their zeta potential and polydispersity index were subsequently evaluated after 5 months of storage to confirm stability. In vivo activity results showed that a 2 mg unformulated β-carotene dose was ineffective as an anticonvulsant. However, salutary response was reported from BCNP at the same dose, as the hind limb duration decreased significantly in maximal electroshock seizure to 9.30 ± 0.86 seconds, which further decreased with polysorbate-80 coating to 2.10 ± 1.16 seconds as compared to normal control (15.8 ± 1.49 seconds) and placebo control (16.50 ± 1.43 seconds). In the PTZ model, the duration of general tonic–clonic seizures reduced significantly to 2.90 ± 0.98 seconds by the use of BCNP and was further reduced on P-80-BCNP to 1.20 ± 0.20 seconds as compared to PTZ control and PTZ-placebo control (8.09 ± 0.26 seconds). General tonic–clonic seizures latency was increased significantly to 191.0 ± 9.80 seconds in BCNP and was further increased in P-80-BCNP to 231.0 ± 16.30 seconds, as compared to PTZ (120.10 ± 4.50 seconds) and placebo control (120.30 ± 7.4 seconds). The results of this study demonstrate a plausible novel anticonvulsant activity of β-carotene at a low dose of 2 mg/kg, with brain-targeted nanodelivery, thus increasing its bioavailability and stability.Keywords: anticonvulsant, blood–brain barrier (BBB), targeted brain delivery, polysorbate-80-coated β-carotene nanoparticles (P-80-BCNP), maximal electroshock seizure (MES), pentylenetetrazole (PTZ)