Nano-Micro Letters (Sep 2019)

Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding

  • Suna Fan,
  • Xiaoting Zheng,
  • Qi Zhan,
  • Huihui Zhang,
  • Huili Shao,
  • Jiexin Wang,
  • Chengbo Cao,
  • Meifang Zhu,
  • Dan Wang,
  • Yaopeng Zhang

DOI
https://doi.org/10.1007/s40820-019-0303-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds. Despite great progress in the preparation of a variety of colored silks, fluorescent silk with enhanced mechanical properties has yet to be explored. In this study, we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots (CNDs). The CNDs were incorporated into silk fibroin, hindering the conformation transformation, confining crystallization, and inducing orientation of mesophase. The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9 ± 82.7 MPa and breaking elongation of 19.2 ± 4.3%, improvements of 55.1% and 53.6%, respectively, in comparison with regular silk. The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells, suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.

Keywords