Forces in Mechanics (Dec 2023)

Improving the blast resistance of sandwich structures by tailoring honeycomb core through varying cell size and vertex-derivative approach

  • M. Nalla Mohamed

Journal volume & issue
Vol. 13
p. 100247

Abstract

Read online

Honeycomb sandwich panels (HSPs) with efficient core design have the potential to enhance blast resistance to tackle increasing blast threats by terrorist attacks. In this work, an innovative vertex-derived approach is introduced to enhance the blast resistance of HSPs. First, a quarter model of regular quadrilateral core HSP structures (RQH) with a cell size of 30.5 mm (10 × 10) was simulated with various amounts of TNT charges(1,2,&3 kg) kept at a height of 100 mm using the CONWEP algorithm available in ABAQUS/Explicit. The results obtained through simulation were validated with the tested results available in the literature. The study was extended by varying the cell sizes of 61 mm (5 × 5), 15.25 mm (20 × 20), and 7.625 mm (40 × 40) for comparison purposes. Further, honeycomb cores were tailored with the vertex-derived approach to enhance the blast resistance characteristics of RQH structures. The explosion resistance was assessed in terms of the deformation of the face sheets and dissipated energy through plastic deformation (PDE) of the face sheets and core. The result proved that the cell size variation and vertex-derived hierarchical core improved the blast resistance and the energy dissipation capacity of the RQH. The obtained results demonstrated that RQH with a 15.25 mm cell size (20 × 20) was found to have a good blast resistance at low and high-intensity blasts compared to other core sizes. The results also proved that the vertex-derived hierarchical topology enhanced the blast resistance of RQH under the same geometric parameters. The results demonstrate that employing vertex-derived hierarchical topology can enhance the blast resistance of HSPs.

Keywords