پژوهش‌های حبوبات ایران (Feb 2024)

Evaluation Plant Yield and Yield Components of Chickpea and Quinoa under Nitrogen and Intercropping Ratios of Chickpea and Quinoa

  • Elham Raftari,
  • Ali Nakhzari Moghaddam,
  • Mehdi Mollashahi,
  • Ebrahim Gholamalipour Alamdari

DOI
https://doi.org/10.22067/ijpr.2023.84081.1064
Journal volume & issue
Vol. 14, no. 2
pp. 263 – 275

Abstract

Read online

IntroductionThe practice of growing two or more crops simultaneously in the same field is called intercropping and it is a common feature in traditional farming of small landholders. It provides farmers with a variety of returns from land and labor, often increases the efficiency with which scarce resources are used, and reduces the failure risk of a single crop that is susceptible to environmental and economic fluctuation. There is another important way that without incurring additional costs and use of water and fertilizer could result in higher production. This approach is increasing agricultural production per unit area by growing more than one crop in a year. Intercropping will be successful when competition for sources is less than competition within a species. Plants in the mixture can be chosen in a way that a species benefits from environmental changes caused by other species in mixed cultures directly. Intercropping inhibits the growth and development of weeds and leads to increased production. Since the system will reduce pesticide use, environmental pollution will be also less proportionally. The objective of the present study was to study some traits of chickpea (plant height, number of pods per plant, number of seeds per plant, number of seeds per plant, 100-seed weight, and plant yield,) under application of nitrogen and planting pattern of chickpea and quinoa. Materials and MethodsIn order to study the effect of nitrogen and intercropping ratios of chickpea and quinoa on some traits of chickpeas, a factorial experiment based on randomized complete Block design (RCBD) was conducted with three replications at Gonbad Kavous University farm during the 2020-2021 growing season. Nitrogen factor was included three levels of non-application and application of 25 and 50 kg N/ha and the treatments of planting pattern were included 9 levels of sole cropping of chickpea, 67 % chickpea + 33 % quinoa, 50% chickpea + 50% quinoa, 33% chickpea + 67% quinoa, 100% chickpea + 33% quinoa, 100% chickpea + 50 % quinoa, 100% chickpea + 67% quinoa, 100% chickpea + 100% quinoa and sole cropping of quinoa. In sole cropping, the distance between the plants on the row for chickpea and quinoa was 10 cm. The operation of harvesting the entire plot was done by removing the border rows and half a meter from both sides of the middle rows. For analysis variance of data software of SAS Ver.9.1.3 was used and treatment mean differences were separated by the least significant difference (LSD) test at the 0.05 probability level. Results and DiscussionThe results of analysis variance showed that planting pattern and nitrogen had a significant effect on plant height, number of pods per plant, number of seeds per pod, number of seeds per plant, 100-seed weight, and plant yield chickpea and also plant height, number of seeds per plant, 1000-seed weight, and plant yield quinoa. Plant height in additive intercropping was more than in replacement intercropping but the number of pods per plant, number of seeds per pod, number of seeds per plant, 100-seed weight, seed weight per plant, and pods weight per plant in replacement treatments and sole cropping of chickpea was more than additive treatments. Nitrogen application increased all traits. Plant yield of quinoa in replacement intercropping of 33% quinoa instead of chickpea was greater than other treatments. However, the plant yield of chickpea in sole cropping of chickpea and replacement intercropping of 33% quinoa instead of chickpeas with 14.11 and 13.26 respectively, which was greater than other treatments. ConclusionsPlant height in additive intercropping treatments was more than in replacement intercropping but the number of pods per plant, number of seeds per pod, number of seeds per plant, 100-seed weight, plant yield, and plant dry weight in replacement treatments and sole cropping of chickpea was more than additive treatments.

Keywords