Annals of Microbiology (Jan 2022)
Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources
Abstract
Abstract Introduction and purpose The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa. Methods Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted. Result Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively. Conclusion Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.
Keywords