Applied Sciences (Jul 2019)
Experimental Study on the Damping Effect of Multi-Unit Particle Dampers Applied to Bracket Structure
Abstract
Particle damping (PD) is a passive mean of vibration control in which small metallic or ceramic particles are placed inside a cavity that attached to the primary structure at the place of high vibration amplitudes. The kinetic energy of the primary structure is dissipated by non-elastic impact and friction between particles and walls. This paper represents a series of experimental investigations of the effects of multi-unit particle dampers (MUPD) attached to a bracket structure under harmonic excitation and random excitation. As a platform to investigate the particle damping characteristics under extreme acceleration environments, the bracket structure was featured by an extremely high response on the top, and its maximum acceleration exceeds 50 times gravity acceleration when the bracket structure was subjected to resonance. This broad range of acceleration conditions was far beyond the scope concerned in most previous work. The experimental results show that for a small weight penalty (no more than 8.8%), multi-unit particle damper can reduce the resonance of the primary structure by more than 50%, whether under sinusoidal excitation or random excitation. And the response of the primary structure depends on the type of cavities and filled coefficient. Layering the cavity in the direction of the main vibration can improve the damping capacity of the multi-unit particle damper. And the damper with small particle size and large number of features is suitable for vibration reduction under high acceleration conditions.
Keywords