مهندسی مخابرات جنوب (Feb 2024)

High-Scale Image Clustering with Semantic Cues Modeling and Spatial Simulation

  • Mahdi Jalali

Journal volume & issue
Vol. 12, no. 47
pp. 61 – 70

Abstract

Read online

In recent years, image annotation is one of the active research topics. In this article, a semi-supervised cooperative clustering technique is proposed for image annotation. Clustering methods are very popular because they do not require annotations. In order to achieve the highest efficiency, the clustering results of six systems with different color space and similarity criteria are cooperatively combined with the majority vote. When the number of votes for an image is low, relevant feedback is used to annotate it. One of the most important parts of the image retrieval system and clustering algorithm is determining the appropriate similarity criteria between images. Nowadays, the linear similarity criterion is mostly used to determine the similarity between images, but the nonlinear models can have much better performance due to their proximity to the human vision system, for this purpose, the KMRBF nonlinear similarity criterion is used to simulate vision. Humans and improvement of recovery results are suggested. Experiments on the Corel image database and satellite images show that the proposed method has good performance. According to the results obtained in the satellite image database, the YIQ color space has a higher accuracy (82.5%). Also, the three color spaces CIELab, HSV and YIQ have higher efficiency, because in these color spaces, luminance is separated from chrominance and these color spaces are closer to the human vision system.

Keywords