JMIR Formative Research (Nov 2024)

An Online Multimodal Food Data Exploration Platform for Specific Population Health: Development Study

  • Lin Yang,
  • Zhen Guo,
  • Xiaowei Xu,
  • Hongyu Kang,
  • Jianqiang Lai,
  • Jiao Li

DOI
https://doi.org/10.2196/55088
Journal volume & issue
Vol. 8
p. e55088

Abstract

Read online

BackgroundNutrient needs vary over the lifespan. Improving knowledge of both population groups and care providers can help with healthier food choices, thereby promoting population health and preventing diseases. Providing evidence-based food knowledge online is credible, low cost, and easily accessible. ObjectiveThis study aimed to develop an online multimodal food data exploration platform for easy access to evidence-based diet- and nutrition-related data. MethodsWe developed an online platform named Food Atlas in collaboration with a multidisciplinary expert group from the National Institute for Nutrition and Health and Peking Union Medical College Hospital in China. To demonstrate its feasibility for Chinese food for pregnant women, a user-friendly and high-quality multimodal food knowledge graph was constructed, and various interactions with graph-structured data were developed for easy access, including graph-based interactive visualizations, natural language retrieval, and image-text retrieval. Subsequently, we evaluated Food Atlas from both the system perspective and the user perspective. ResultsThe constructed multimodal food knowledge graph contained a total of 2011 entities, 10,410 triplets, and 23,497 images. Its schema consisted of 11 entity types and 26 types of semantic relations. Compared with 5 other online dietary platforms (Foodwake, Boohee, Xiachufang, Allrecipes, and Yummly), Food Atlas offers a distinct and comprehensive set of data content and system functions desired by target populations. Meanwhile, a total of 28 participants representing 4 different user groups were recruited to evaluate its usability: preparing for pregnancy (n=8), pregnant (n=12), clinicians (n=5), and dietitians (n=3). The mean System Usability Scale index of our platform was 82.5 (SD 9.94; range 40.0-82.5). This above-average usability score and the use cases indicated that Food Atlas is tailored to the needs of the target users. Furthermore, 96% (27/28) of the participants stated that the platform had high consistency, illustrating the necessity and effectiveness of health professionals participating in online, evidence-based resource development. ConclusionsThis study demonstrates the development of an online multimodal food data exploration platform and its ability to meet the rising demand for accessible, credible, and appropriate evidence-based online dietary resources. Further research and broader implementation of such platforms have the potential to popularize knowledge, thereby helping populations at different life stages make healthier food choices.