Heliyon (Jul 2024)
5-Fluorouracil resistance-based immune-related gene signature for COAD prognosis
Abstract
Background: Drug resistance is the primary obstacle to advanced tumor therapy and the key risk factor for tumor recurrence and death. 5-Fluorouracil (5-FU) chemotherapy is the most common chemotherapy for individuals with colorectal cancer, despite numerous options. Methods: The Gene Expression Omnibus database was utilized to extract expression profile data of HCT-8 human colorectal cancer wild-type cells and their 5-FU-induced drug resistance cell line. These data were used to identify 5-FU resistance-related differentially expressed genes (5FRRDEGs), which intersected with the colorectal adenocarcinoma (COAD) transcriptome data provided by the Cancer Genome Atlas Program database. A prognostic signature containing five 5FRRDEGs (GOLGA8A, KLC3, TIGD1, NBPF1, and SERPINE1) was established after conducting a Cox regression analysis. We conducted nomogram development, drug sensitivity analysis, tumor immune microenvironment analysis, and mutation analysis to assess the therapeutic value of the prognostic qualities. Results: We identified 166 5FRRDEGs in patients with COAD. Subsequently, we created a prognostic model consisting of five 5FRRDEGs using Cox regression analysis. The patients with COAD were divided into different risk groups by risk score; the high-risk group demonstrated a worse prognosis than the low-risk group. Conclusion: In summary, the 5FRRDEG-based prognostic model is an effective tool for targeted therapy and chemotherapy in patients with COAD. It can accurately predict the survival prognosis of these patients as well as to provide the direction for exploring the resistance mechanism underlying COAD.