Ciência Rural (Dec 2006)
Esperanças matemáticas dos quadrados médios: uma análise essencial Mean square expected values: an essential analysis
Abstract
Este trabalho teve como objetivo avaliar e identificar qual o tipo de soma de quadrados mais apropriada para testar hipóteses de interesse, assim como discutir alternativas mais adequadas para a solução de inconvenientes expressos por meio da análise da esperança matemática dos quadrados médios utilizados em modelos lineares mistos. A análise das esperanças matemáticas dos quadrados médios pode ser uma ferramenta de grande importância nas inferências a partir de dados experimentais, tanto incompletos (casela vazia) quanto não-balanceados. Desta forma, foram utilizados quatro exemplos, cada qual com sua peculiaridade em função do experimento ser completo ou incompleto com dados balanceados ou não-balanceados e na presença de casela vazia. O pacote estatístico SAS, versão Learning Edition, foi empregado para analisar os experimentos. O resultado da análise das esperanças matemáticas dos quadrados médios indicou que a soma de quadrados do tipo I somente apresentou condições de ser utilizada em presença de dados completamente balanceados. De modo contrário, os resultados apontam que a soma de quadrados tipo III é a soma de quadrados mais apropriada no caso de dados não-balanceados. As somas de quadrados tipo II e IV são as mais importantes no caso de caselas vazias, fato que corrobora a necessidade de avaliar sempre as esperanças matemáticas dos quadrados médios.This research was aimed at evaluating and identifing which type of sum of squares can be more appropriate to test hypotheses and also presenting appropriate alternatives to solution of problems through the analysis of mean square expected values used in the methodology of mixed linear models. The analysis of mean square expected values can be a tool of great importance in analysis of data as incomplete (empty casela) as unbalanced experiment. Therefore, four examples were used each one with its pecualiarity concerning the complete or incomplete experiment with balanced or unbalanced data and in the presence of empty casela. The SAS statistical package, version Learning Edition, was used to analyze the experiments. The result of the analysis of mean square expected values indicated that the sum of squares of the type ‘I’ can be used only at of condition of completely balanced data. These results indicated on the other hand, that the sum of squares of the type ‘III’ is the most appropriate type for unbalanced data. The sum of squares of the type ‘II’ and ‘IV’ are the most important in the case of empty caselas; fact that supports the idea of a necessity of always evaluating the mean square expected values.
Keywords