Frontiers in Cardiovascular Medicine (Apr 2022)
Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis
- Fahimeh Varzideh,
- Fahimeh Varzideh,
- Urna Kansakar,
- Urna Kansakar,
- Kwame Donkor,
- Scott Wilson,
- Stanislovas S. Jankauskas,
- Stanislovas S. Jankauskas,
- Pasquale Mone,
- Xujun Wang,
- Xujun Wang,
- Angela Lombardi,
- Gaetano Santulli,
- Gaetano Santulli
Affiliations
- Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Fahimeh Varzideh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Urna Kansakar
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Stanislovas S. Jankauskas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Xujun Wang
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Xujun Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Gaetano Santulli
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- DOI
- https://doi.org/10.3389/fcvm.2022.863238
- Journal volume & issue
-
Vol. 9
Abstract
After an ischemic injury, the heart undergoes a complex process of structural and functional remodeling that involves several steps, including inflammatory and fibrotic responses. In this review, we are focusing on the contribution of microRNAs in the regulation of inflammation and fibrosis after myocardial infarction. We summarize the most updated studies exploring the interactions between microRNAs and key regulators of inflammation and fibroblast activation and we discuss the recent discoveries, including clinical applications, in these rapidly advancing fields.
Keywords
- cardiac remodeling
- clinical trials
- drug development
- epigenetics
- heart failure
- ischemic heart disease