Energy and Built Environment (Apr 2022)
Characterization of a new total heat recovery system using CaCl2 as working fluid: Thermal modeling and physical analysis
Abstract
This paper introduces a kind of open cycle absorption heat wet flue gas heat recovery system, which use CaCl2 as the working medium. The system will use the wet heat recovery method and combined with an efficient heat pump system for flue gas as a heat source generator. Through direct contact with the solution in the absorber, the flue gas is going to carry out gas, liquid heat transfer between heat exchanger, realization of sensible heat and latent heat step by step.As the key part of the system, absorber is established by one-dimensional steady-state heat transfer and mass transfer model. This paper uses the finite difference method to model the discrete numerical methods, and analyzes the characteristics of heat and mass transfer in the absorber. We obtain the concentration curves of the three kinds of working medium's temperature and flow along the height direction. We also analyze the influence of CaCl2 solution parameters changes on the absorption process, parsing the reason of the temperature change by analyzing the three working medium's energy flow trend. We found that the temperature change of flue gas is non-monotonic, which decreases gradually in the range of absorption tower height 0–0.9 m, and then increases gradually. The reason for this change is that sensible heat exchange and latent heat exchange exist between flue gas and solution. Although such a change has an impact on the efficiency of the system, it prevents the ''white smoke'' from condensing in the air, which effectively protects the environment. Compared with conventional LiBr absorption heat pump, the system constructed in this paper has certain advantages in latent heat recovery, flue gas heat energy utilization, energy conservation and emission reduction and economy.