Zaporožskij Medicinskij Žurnal (Dec 2020)
Screening study of new thiazolidinone derivatives for anticonvulsant activity
Abstract
The search for new antiepileptic drugs that would have greater margins of safety and fewer adverse effects is relevant. Thiazolidinone are a promising class for the development of new anticonvulsants. Aim. To conduct a screening study of new thiazolidinone derivatives for anticonvulsant activity on a seizure model induced by pentylenetetrazole and maximal electroshock; to analyze the structure – activity relationship; to reveal a lead-compound and investigate its dose-dependent manner. Materials and methods. Basic screening seizure models of pentylenetetrazol and maximal electroshock test were used in mice. The test original 9 thiazolidinone derivatives (100 mg/kg) and the reference drugs of sodium valproate (300 mg/kg), carbamazepine (40 mg/kg) were administered intragastrically 30 minutes before subcutaneous administration of pentylenetetrazol (90 mg/kg) or induction with maximal electroshock by giving a current with strength of 50 mA and frequency of 50 Hz for 0.2 s. In order to study the dose-dependent manner, the lead-compound was administered intragastrically in doses ranging from 25 mg/kg to 150 mg/kg. Results. A total of 9 compounds were studied, of which 3 did not affect experimental convulsions, 2 showed proconvulsive activity, and 4 had an anticonvulsant effect. The lead-compound 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone was determined under laboratory code Les-6222, which exhibited the highest anticonvulsant properties. The “structure–anticonvulsant activity” relationship in a series of thiazolidinone derivatives was analyzed. The dose-dependent manner of 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone anticonvulsant effect was studied using 2 seizure models, and the most effective dose of 100 mg / kg was identified. Conclusions. 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylamino)-4-thiazolidinone is a promising compound for in-depth studies on anticonvulsant and related pharmacological activities in order to develop new original anticonvulsants.
Keywords