Journal of Dairy Science (Jun 2022)

Breeding value reliabilities for multiple-trait single-step genomic best linear unbiased predictor

  • Hafedh Ben Zaabza,
  • Matti Taskinen,
  • Esa A. Mäntysaari,
  • Timo Pitkänen,
  • Gert Pedersen Aamand,
  • Ismo Strandén

Journal volume & issue
Vol. 105, no. 6
pp. 5221 – 5237

Abstract

Read online

ABSTRACT: Approximate multistep methods to calculate reliabilities for estimated breeding values in large genetic evaluations were developed for single-trait (ST-R2A) and multitrait (MT-R2A) single-step genomic BLUP (ssGBLUP) models. First, a traditional animal model was used to estimate the amount of nongenomic information for the genotyped animals. Second, this information was used with genomic data in a genomic BLUP model (genomic BLUP/SNP-BLUP) to approximate the total amount of information and ssGBLUP reliabilities for the genotyped animals. Finally, reliabilities for the nongenotyped animals were calculated using a traditional animal model where the increased information due to genomic data for the genotyped animals is accounted for by including pseudo-record counts for the genotyped animals. The approaches were tested using a multiple-trait ssGBLUP model on 2 data sets. The first data set (data 1) was small enough such that exact ssGBLUP model reliabilities could be computed by inversion and compared with the approximation method reliabilities. Data 1 had 46,535 first-, 35,290 second-, and 23,780 third-lactation 305-d milk yield records from 47,124 Finnish Red dairy cows. The pedigree comprised 64,808 animals, of which 19,757 were genotyped. We examined the efficiency of the MT-R2A approximation on a large data set (data 2) derived from the joint Nordic (Danish, Finnish, and Swedish) Holstein dairy cattle data. Data 2 had 17.8 million 305-d milk records from 8.3 million cows and first 3 lactations. The pedigree had 11 million animals of which 274,145 were genotyped on 46,342 SNP markers. For data 1, correlations between the exact ssGBLUP model and the ST-R2A for the genotyped (nongenotyped) animals were 0.995 (0.987), 0.965 (0.984), and 0.950 (0.983) for first, second, and third lactation, respectively. Correspondingly, correlations between exact ssGBLUP reliabilities and MT-R2A for the genotyped (nongenotyped) animals were 0.995 (0.993), 0.992 (0.991), and 0.990 (0.990) for first, second, and third lactation, respectively. The regression coefficients (b1) of ssGBLUP reliability on ST-R2A for the genotyped (nongenotyped) animals ranged from 0.87 (0.94) for first lactation to 0.68 (0.93) for third lactation, whereas for MT-R2A they were between 0.91 (0.99) for first lactation to 0.89 (0.99) for third lactation. Correspondingly, the intercepts varied from 0.11 (0.05) to 0.3 (0.06) for ST-R2A and from 0.06 (0.01) to 0.07 (0.02) for MT-R2A. The computing time for the approximation method was approximately 12% of that required by the direct exact approach. In conclusion, the developed approximate approach allows calculating estimated breeding value reliabilities in the ssGBLUP model even for large data sets.

Keywords