SciPost Physics (Jan 2022)

Spiking neuromorphic chip learns entangled quantum states

  • Stefanie Czischek, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Lukas Kades, Jan M. Pawlowski, Markus K. Oberthaler, Johannes Schemmel, Mihai A. Petrovici, Thomas Gasenzer, Martin Gärttner

DOI
https://doi.org/10.21468/SciPostPhys.12.1.039
Journal volume & issue
Vol. 12, no. 1
p. 039

Abstract

Read online

The approximation of quantum states with artificial neural networks has gained a lot of attention during the last years. Meanwhile, analog neuromorphic chips, inspired by structural and dynamical properties of the biological brain, show a high energy efficiency in running artificial neural-network architectures for the profit of generative applications. This encourages employing such hardware systems as platforms for simulations of quantum systems. Here we report on the realization of a prototype using the latest spike-based BrainScaleS hardware allowing us to represent few-qubit maximally entangled quantum states with high fidelities. Bell correlations of pure and mixed two-qubit states are well captured by the analog hardware, demonstrating an important building block for simulating quantum systems with spiking neuromorphic chips.