Nanomaterials (Mar 2024)

Ru-Ce<sub>0.7</sub>Zr<sub>0.3</sub>O<sub>2−δ</sub> as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells

  • Miguel Morales,
  • Mohammad Rezayat,
  • Sandra García-González,
  • Antonio Mateo,
  • Emilio Jiménez-Piqué

DOI
https://doi.org/10.3390/nano14070603
Journal volume & issue
Vol. 14, no. 7
p. 603

Abstract

Read online

The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni–zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2−δ (ruthenium–zirconium-doped ceria, Ru-CZO) as an anode catalyst layer (ACL) is proposed to be a promising solution. For this purpose, the CZO powder was prepared by the sol–gel synthesis method, and subsequently, nanoparticles of Ru (1.0–2.0 wt.%) were synthesized by the impregnation method and calcination. The catalyst powder was characterized by BET-specific surface area, X-ray diffraction (XRD), field emission scanning electron microscopy with an energy-dispersive spectroscopy detector (FESEM-EDS), and transmission electron microscopy (TEM) techniques. Afterward, the catalytic activity of Ru-CZO catalyst was studied using DME partial oxidation. Finally, button anode-supported SOFCs with Ru-CZO ACL were prepared, depositing Ru-CZO onto the anode support and using an annealing process. The effect of ACL on the electrochemical performance of cells was investigated under a DME and air mixture at 750 °C. The results showed a high dispersion of Ru in the CZO solid solution, which provided a complete DME conversion and high yields of H2 and CO at 750 °C. As a result, 2.0 wt.% Ru-CZO ACL enhanced the cell performance by more than 20% at 750 °C. The post-test analysis of cells with ACL proved a remarkable resistance of Ru-CZO ACL to carbon deposition compared to the reference cell, evidencing the potential application of Ru-CZO as a catalyst as well as an ACL for direct DME SOFCs.

Keywords