Applied Sciences (Apr 2020)

Study on the Influencing Factors of the Atomization Rate in a Piezoceramic Vibrating Mesh Atomizer

  • Qiufeng Yan,
  • Wanting Sun,
  • Jianhui Zhang

DOI
https://doi.org/10.3390/app10072422
Journal volume & issue
Vol. 10, no. 7
p. 2422

Abstract

Read online

On the basis of previous study in our research group, the phenomenon of the dynamic tapered angle was founded, the occurrence of atomization is regarded to derive from the combined effects of the dynamic variation of the micro-tapered aperture, and the difference between forward and reverse flow resistance has been explained by both theories and experiments. It has been revealed that the main influencing factors of the atomization rate are driving voltage, driving frequency, and so on, while the root causes of the various atomization rates still need to be further clarified. In this paper, a micro-tapered aperture worked as a micron-sized tapered flow tube valveless piezoelectric pump in periodic variation. The working principle of such a micro-tapered aperture atomizer was analyzed in detail, and the corresponding formula of the atomization rate was also established. Through measuring the atomization rates at different working frequencies (f), it was established that when the f was set as 122 kHz, the atomization rate reached a maximum value. By building the relationship between the atomization rate and voltage at a fixed resonance frequency, it can be seen that the atomization rate increased with the increase of driving voltage. Subsequently, in order to measure their atomization rates, the micro-tapered apertures of three different outlet diameters were applied, so that the atomization rate was enhanced with the increase of the micro-tapered aperture diameter. Moreover, through examining the atomization rates at different temperatures, it was observed that the atomization rate rose with increasing temperature; while changing the liquid concentration, the atomization rate was also enhanced by the increase in its concentration. Apparently, the impact factors including working frequency, driving voltage, outlet diameter, temperature, and liquid concentration all exert some effects on the atomization rate. It is worth noting that at the first stage, these influence factors indirectly work on the micro-tapered aperture structure or flow state, followed by further effects on the flow resistance. As above-mentioned, in this work, we considered that the root cause influencing the atomization rate in a piezoceramic vibrating mesh atomizer can be attributed to the flow resistance.

Keywords