Journal of Manufacturing and Materials Processing (Sep 2023)
A Machine Learning Perspective to the Investigation of Surface Integrity of Al/SiC/Gr Composite on EDM
Abstract
Conventional mechanical machining of composite is a challenging task, and thus, electric discharge machining (EDM) was used for the processing of the developed material. The processing of developed composite using different electrodes on EDM generates different surface characteristics. In the current work, the effect of tool material on the surface characteristics, along with other input parameters, is investigated as per the experimental design. The experimental design followed is an RSM-based Box–Behnken design, and the input parameters in the current research are tool material, current, voltage, pulse-off time, and pulse-on time. Three levels of each parameter are selected, and 46 experiments are conducted. The surface roughness (Ra) is investigated for each experimental setting. The machine learning approach is used for the prediction of surface integrity by different techniques, namely Xgboost, random forest, and decision tree. Out of all the techniques, the Xgboost technique shows maximum accuracy as compared to other techniques. The analysis of variance of the predicted solutions is investigated. The empirical model is developed using RSM and is further solved with the help of a teaching learning-based algorithm (TLBO). The SR value predicted after RSM and integrated approach of RSM-ML-TLBO are 2.51 and 2.47 µm corresponding to Ton: 45 µs; Toff: 73 µs; SV:8V; I: 10A; tool: brass and Ton: 47 µs; Toff: 76 µs; SV:8V; I: 10A; tool: brass, respectively. The surface integrity at the optimized setting reveals the presence of microcracks, globules, deposited lumps, and sub-surface formation due to different amounts of discharge energy.
Keywords