Energies (Oct 2023)
Experimental Research on the Gas-Solid Flow Characteristics in Large-Scale Dual Fluidized Bed Reactor
Abstract
A dual fluidized bed (DFB) reactor is the main operating system of various energy-efficient and clean utilization technologies. The gas-solid flow characteristics of the DFB reactor greatly affect the efficiency of various technologies. A large-scale DFB reactor with a maximum height of 21.6 m was built and relevant cold mode tests were carried out in this study. The effects of the superficial gas velocity of both beds, static bed height and particle size on the distribution of both pressure and solid suspension density, solid circulation rate, solid inventory distribution ratio and other characteristics were studied. For 282 μm-particles, the solid suspension density in the dense phase zone of the two beds was 100–400 and 400–800 kg/m3, respectively, when the static bed height was 0.65 m; the solid circulation rate was about 0.87–1.75, 1.04–3.04 and 1.13–3.69 kg/(m2s) when the static bed height was 0.65, 0.95 and 1.25 m, respectively. The solid circulation rate was positively correlated with the static bed height and the superficial gas velocity of both beds, yet negatively correlated with the particle size. Additionally, the empirical equation of solid circulation rate and the empirical equation of solid inventory distribution ratio were proposed, respectively. The material control method of the DFB reactor is put forward.
Keywords