Applied Sciences (Jun 2023)
Supporting Imaging of Austenitic Welds with Finite Element Welding Simulation—Which Parameters Matter?
Abstract
The basic principle of ultrasound is to relate the time of flight of a received echo to the location of a reflector, assuming a known and constant velocity of sound. This assumption breaks down in austenitic welds, in which a microstructure with large oriented austenitic grains induces local velocity differences resulting in deviations of the ultrasonic beam. The inspection problem is further complicated by scattering at grain boundaries, which introduces structural noise and attenuation. Embedding material information into imaging algorithms usually improves image quality and aids interpretation. Imaging algorithms can take the weld structure into account if it is known. The usual way to obtain such information is by metallurgical analysis of slices of a representative mock-up fabricated using the same materials and welding procedures as in the actual component. A non-destructive alternative to predict the weld structure is based on the record of the welding procedure, using either phenomenological models or the finite element method. The latter requires detailed modelling of the welding process to capture the weld pool and the microstructure formation. Several parameters are at play, and uncertainties intrinsically affect the process owing to the limited information available. This paper reports a case study aiming to determine the most critical parameters and levels of complexity of the weld formation models from the perspective of ultrasonic imaging. By combining state-of-the-art welding simulation with time-domain finite element prediction of ultrasound in complex welds, we assess the impact of the modelling choices on the offset and spatial spreading of defect signatures. The novelty of this work is in linking welding simulation with ultrasonic imaging and quantifying the effect of the common assumptions in solidification modelling from the non-destructive examination perspective. Both aspects have not been explored in the literature to date since solidification modelling has not been used to support ultrasonic inspection extensively. The results suggest that capturing electrode tilt, welding power, and weld path correctly is less significant. Bead shape was identified as having the greatest influence on delay laws used to compute ultrasonic images. Most importantly, we show that neglecting mechanical deformation in FE, allowing for simpler thermal simulation supplemented with a phenomenological grain growth loop, does not reduce the quality of the images considerably. Our results offer a pragmatic balance between the complexity of the model and the quality of ultrasonic images and suggest a perspective on how weld formation modelling may serve inspections and guide pragmatic implementation.
Keywords