Soil Systems (Feb 2023)
Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration
Abstract
In the present study, the adsorption of zinc (Zn), lead (Pb), copper (Cu), and cadmium (Cd) was studied in two already polluted urban soil samples with different pH values, an acidic and an alkaline one. The Langmuir and Freundlich adsorption isotherm equations were used to thoroughly study the adsorption of the metallic elements on the solid surface of the soils. Langmuir equation described the adsorption of each metal satisfactorily, with a slight predominance over Freundlich, in both soils, as the R2 value approached almost unity. Even though Zn and Cu were adsorbed on the soil phase, their adsorption was minimal compared to the adsorption of more harmful metals such as Pb and Cd. Using the values of the coefficients obtained from the equations of the mathematical models, we concluded that in alkaline soils, the retention of metals was much greater than in acidic soils. The simultaneous presence of metals during the addition of the single-element solutions of the metals to the already metal-contaminated soils caused competitive adsorption increasing the retention of the more toxic metals on the solid surface of the alkaline soil. Factors affecting soil sorption (such as soil pH and CaCO3 content) were studied to provide theoretical support for understanding the laws and causes of metal sorption in the soils of the survey.
Keywords