Sensors (Jul 2012)

Correcting the Temperature Influence on Soil Capacitance Sensors Using Diurnal Temperature and Water Content Cycles

  • Olivier Marloie,
  • Jean-Claude Gaudu,
  • André Chanzy

DOI
https://doi.org/10.3390/s120709773
Journal volume & issue
Vol. 12, no. 7
pp. 9773 – 9790

Abstract

Read online

The influence of temperature on the dielectric permittivity of soil is the result of counteracting effect that depends on the soil’s composition and mineralogy. In this paper, laboratory experiments showed that for a given water content, the soil dielectric permittivity was linearly related to the temperature, with a slope (α) that varied between samples taken in the same soil. These variations are difficult to predict and therefore, a simple and straightforward algorithm was designed to estimate α based on the diurnal patterns of both the measured dielectric permittivity and the soil temperature. The underlying idea is to assume that soil water content variations can be known with a reasonable accuracy over an appropriate time window within a day. This allows determining the contribution of the soil water content to the dielectric permittivity variations and then, the difference with the observed measurements is attributed to the soil temperature. Implementation of the correction methods in a large number of experiments significantly improved the physical meaning of the temporal evolution of the soil water content as the daily cycles for probes located near the surface or the long-term variations for more deeply installed probes.

Keywords