Beilstein Journal of Nanotechnology (Dec 2012)
Diamond nanophotonics
- Katja Beha,
- Helmut Fedder,
- Marco Wolfer,
- Merle C. Becker,
- Petr Siyushev,
- Mohammad Jamali,
- Anton Batalov,
- Christopher Hinz,
- Jakob Hees,
- Lutz Kirste,
- Harald Obloh,
- Etienne Gheeraert,
- Boris Naydenov,
- Ingmar Jakobi,
- Florian Dolde,
- Sébastien Pezzagna,
- Daniel Twittchen,
- Matthew Markham,
- Daniel Dregely,
- Harald Giessen,
- Jan Meijer,
- Fedor Jelezko,
- Christoph E. Nebel,
- Rudolf Bratschitsch,
- Alfred Leitenstorfer,
- Jörg Wrachtrup
Affiliations
- Katja Beha
- Department of Physics and Center for Applied Photonics, Konstanz, Germany
- Helmut Fedder
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- Marco Wolfer
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg i. Br., Germany
- Merle C. Becker
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- Petr Siyushev
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- Mohammad Jamali
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- Anton Batalov
- Department of Physics and Center for Applied Photonics, Konstanz, Germany
- Christopher Hinz
- Department of Physics and Center for Applied Photonics, Konstanz, Germany
- Jakob Hees
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg i. Br., Germany
- Lutz Kirste
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg i. Br., Germany
- Harald Obloh
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg i. Br., Germany
- Etienne Gheeraert
- Institut Neel, CNRS and Université Joseph Fourier, Grenoble, France
- Boris Naydenov
- Institut für Quantenoptik, Universität Ulm, Ulm, Germany
- Ingmar Jakobi
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- Florian Dolde
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- Sébastien Pezzagna
- RUBION, Ruhr-Universität Bochum, Bochum, Germany
- Daniel Twittchen
- Element Six Ltd, Ascot, United Kingdom
- Matthew Markham
- Element Six Ltd, Ascot, United Kingdom
- Daniel Dregely
- 4. Physikalisches Institut and Scope Research Centre, Stuttgart, Germany
- Harald Giessen
- 4. Physikalisches Institut and Scope Research Centre, Stuttgart, Germany
- Jan Meijer
- RUBION, Ruhr-Universität Bochum, Bochum, Germany
- Fedor Jelezko
- Institut für Quantenoptik, Universität Ulm, Ulm, Germany
- Christoph E. Nebel
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg i. Br., Germany
- Rudolf Bratschitsch
- Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
- Alfred Leitenstorfer
- Department of Physics and Center for Applied Photonics, Konstanz, Germany
- Jörg Wrachtrup
- 3. Physikalisches Institut and Scope Research Centre University of Stuttgart, Stuttgart, Germany
- DOI
- https://doi.org/10.3762/bjnano.3.100
- Journal volume & issue
-
Vol. 3,
no. 1
pp. 895 – 908
Abstract
We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.
Keywords