Mining (Jul 2023)
Effectiveness of Protein and Polysaccharide Biopolymers as Dust Suppressants on Mine Soils: Large-Scale Field Trials
Abstract
Recent laboratory studies have shown that biopolymers have the potential to act as dust suppressants on barren mine soils. However, there is a lack of field trials investigating the effectiveness of biopolymer treatments under real field conditions on a large scale. This study performed field trials to examine the potential of three biopolymers—corn starch (CS), xanthan gum (XG), and fava bean protein concentrate (FBPC)—as dust suppressants. The field trials started in August 2022 with spraying of low doses of the selected biopolymers on trial areas of an overburden dump at the Inden open-cast lignite mine, Germany. The field trials were conducted over 45 days. They included repeated measurements of dust emissions from soil plots exposed to different airflows generated by an electric blower, visual inspections, and penetrometer tests. The results showed that all biopolymer treatments effectively suppressed dust emissions in the short term up to 8 days after application. Total suspended particle emissions measured on the biopolymer-treated trial plots were significantly reduced and ranged from 0.05 to 0.27 mg/m3 compared to the untreated control (4.5 to 39.2 mg/m3). The visual inspections and penetrometer tests supported these results. After day 8, rainfall-induced leaching of the biopolymers resulted in the rapid degradation of the treatments’ effectiveness. The results suggest that the treatments would have lasted longer under dry conditions. Thus, the field trials provide practical evidence that biopolymers can effectively mitigate dust emissions on exposed, undisturbed mine soils in the short term, making them a bio-based alternative to traditional dust suppressants, such as chloride salts or petroleum-based products.
Keywords