Mathematics (Dec 2021)

Generalized Convexity Properties and Shape-Based Approximation in Networks Reliability

  • Gabriela Cristescu,
  • Vlad-Florin Drăgoi,
  • Sorin Horaţiu Hoară

DOI
https://doi.org/10.3390/math9243182
Journal volume & issue
Vol. 9, no. 24
p. 3182

Abstract

Read online

Some properties of generalized convexity for sets and functions are identified in case of the reliability polynomials of two dual minimal networks. A method of approximating the reliability polynomials of two dual minimal network is developed based on their mutual complementarity properties. The approximating objects are from the class of quadratic spline functions, constructed based on both interpolation conditions and shape knowledge. It is proved that the approximant objects preserve both the high-order convexity and some extremum properties of the exact reliability polynomials. It leads to pointing out the area of the network where the maximum number of paths is achieved. Numerical examples and simulations show the performance of the algorithm, both in terms of low complexity, small error and shape preserving. Possibilities of increasing the accuracy of approximation are discussed.

Keywords