Respiratory Research (Dec 2006)

Arsenic trioxide, a potent inhibitor of NF-κB, abrogates allergen-induced airway hyperresponsiveness and inflammation

  • Xie Wei-Ping,
  • Cui Xue-Fan,
  • Zhu Yi,
  • Zhou Lin-Fu,
  • Hu Ai-Hua,
  • Yin Kai-Sheng

DOI
https://doi.org/10.1186/1465-9921-7-146
Journal volume & issue
Vol. 7, no. 1
p. 146

Abstract

Read online

Abstract Background Overactivation of nuclear factor κB (NF-κB) orchestrates airway eosinophilia, but does not dampen airway hyperresponsiveness in asthma. NF-κB repression by arsenic trioxide (As2O3) contributes to apoptosis of eosinophils (EOS) in airways. Here we provide evidence that As2O3 abrogates allergen (OVA)-induced airway eosinophilia by modulating the expression of IκBα, an NF-κB inhibitory protein, and decreases the airway hyperresponsiveness. Methods Using a murine model of asthma, the airway hyperresponsiveness was conducted by barometric whole-body plethysmography. Airway eosinophilia, OVA-specific IgE in serum, and chemokine eotaxin and RANTES (regulated upon activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid were measured by lung histology, Diff-Quick staining, and ELISA. Chemokine-induced EOS chemotactic activity was evaluated using EOS chemotaxis assay. Electrophoretic mobility shift assay and Western blot analysis were performed to assess pulmonary NF-κB activation and IκBα expression, respectively. Results As2O3 attenuated the allergen-induced serum IgE, chemokine expression of eotaxin and RANTES, and the EOS recruitment in bronchoalveolar lavage fluid, which is associated with an increased IκBα expression as well as a decreased NF-κB activation. Also, As2O3 suppressed the chemotaxis of EOS dose-dependently in vitro. Additionally, As2O3 significantly ameliorated the allergen-driven airway hyperresponsiveness, the cardinal feature underlying asthma. Conclusion These findings demonstrate an essential role of NF-κB in airway eosinophilia, and illustrate a potential dissociation between airway inflammation and hyperresponsiveness. As2O3 likely exerts its broad anti-inflammatory effects by suppression of NF-κB activation through augmentation of IκBα expression in asthma.