Heliyon (Oct 2022)
Roasted cashew (Anacardium occidentale L.) nut-enhanced diet forestalls cisplatin-initiated brain harm in rats
Abstract
The incessant dose constraining symptom of the chemotherapeutic agent, cisplatin is neurotoxicity. This examination tried to explore the neuroprotective impact of roasted cashew nut-enhanced diet against brain deficits related with treatment with cisplatin. Rats were separated in to six groups: Control, CIS (cisplatin [7 mg/kg body weight, i.p]), CIS +10% CN (cisplatin plus 10% roasted cashew nut), CIS +20% CN (cisplatin plus 20% roasted cashew nut), 10% CN (10% roasted cashew nut) and 20% CN (20% roasted cashew nut) for 28 days. Key enzymes associated with brain function, including cholinesterases (AChE and BChE), monoaminergic enzyme (MAO), arginase, and adenosine deaminase (ADA), were investigated after the treatment. The following oxidative stress indicators were also measured in the rat brain: glutathione-S-transferase (GST), glutathione peroxidase (GPx), total antioxidant capacity (TAC), total thiol (T-SH), non-protein thiol (NPSH), thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD). Our outcomes demonstrated that roasted cashew nut enhanced diet showed inhibitory impact on activities of AChE, BChE, ADA, MAO and arginase in cisplatin-induced rats. The roasted cashew nut supplemented diet also boosted redox equilibrium and displayed protection against cispaltin-induced oxidative damage to rats' brains by an increase in SOD, CAT, GST and GPx activities, TAC, T-SH, NPSH and NO levels as well as a considerable drop in ROS and RBARS levels. Roasted cashew nut enhanced diet additionally forestalled neuronal degeneration in rat brain. Thus, roasted cashew nuts could be used as a nutraceutical or functional food to treat cisplatin-induced neurotoxicity. Practical applications: The results show that increasing roasted cashew nut consumption can significantly improve antioxidant status, reduce lipid peroxidation, and suppress cholinesterase, adenosine deaminase, monoamine oxidase, and arginase activities in the brain under cisplatin-induced circumstances.