JMIR Formative Research (Apr 2024)
Precision Assessment of Real-World Associations Between Stress and Sleep Duration Using Actigraphy Data Collected Continuously for an Academic Year: Individual-Level Modeling Study
Abstract
BackgroundHeightened stress and insufficient sleep are common in the transition to college, often co-occur, and have both been linked to negative health outcomes. A challenge concerns disentangling whether perceived stress precedes or succeeds changes in sleep. These day-to-day associations may vary across individuals, but short study periods and group-level analyses in prior research may have obscured person-specific phenotypes. ObjectiveThis study aims to obtain stable estimates of lead-lag associations between perceived stress and objective sleep duration in the individual, unbiased by the group, by developing an individual-level linear model that can leverage intensive longitudinal data while remaining parsimonious. MethodsIn total, 55 college students (n=6, 11% second-year students and n=49, 89% first-year students) volunteered to provide daily self-reports of perceived stress via a smartphone app and wore an actigraphy wristband for the estimation of daily sleep duration continuously throughout the academic year (median usable daily observations per participant: 178, IQR 65.5). The individual-level linear model, developed in a Bayesian framework, included the predictor and outcome of interest and a covariate for the day of the week to account for weekly patterns. We validated the model on the cohort of second-year students (n=6, used as a pilot sample) by applying it to variables expected to correlate positively within individuals: objective sleep duration and self-reported sleep quality. The model was then applied to the fully independent target sample of first-year students (n=49) for the examination of bidirectional associations between daily stress levels and sleep duration. ResultsProof-of-concept analyses captured expected associations between objective sleep duration and subjective sleep quality in every pilot participant. Target analyses revealed negative associations between sleep duration and perceived stress in most of the participants (45/49, 92%), but their temporal association varied. Of the 49 participants, 19 (39%) showed a significant association (probability of direction>0.975): 8 (16%) showed elevated stress in the day associated with shorter sleep later that night, 5 (10%) showed shorter sleep associated with elevated stress the next day, and 6 (12%) showed both directions of association. Of note, when analyzed using a group-based multilevel model, individual estimates were systematically attenuated, and some even reversed sign. ConclusionsThe dynamic interplay of stress and sleep in daily life is likely person specific. Paired with intensive longitudinal data, our individual-level linear model provides a precision framework for the estimation of stable real-world behavioral and psychological dynamics and may support the personalized prioritization of intervention targets for health and well-being.