International Journal of Digital Earth (Dec 2023)

Adopting GPU computing to support DL-based Earth science applications

  • Zifu Wang,
  • Yun Li,
  • Kevin Wang,
  • Jacob Cain,
  • Mary Salami,
  • Daniel Q. Duffy,
  • Michael M. Little,
  • Chaowei Yang

DOI
https://doi.org/10.1080/17538947.2023.2233488
Journal volume & issue
Vol. 16, no. 1
pp. 2660 – 2680

Abstract

Read online

With the advancement of Artificial Intelligence (AI) technologies and accumulation of big Earth data, Deep Learning (DL) has become an important method to discover patterns and understand Earth science processes in the past several years. While successful in many Earth science areas, AI/DL applications are often challenging for computing devices. In recent years, Graphics Processing Unit (GPU) devices have been leveraged to speed up AI/DL applications, yet computational performance still poses a major barrier for DL-based Earth science applications. To address these computational challenges, we selected five existing sample Earth science AI applications, revised the DL-based models/algorithms, and tested the performance of multiple GPU computing platforms to support the applications. Application software packages, performance comparisons across different platforms, along with other results, are summarized. This article can help understand how various AI/ML Earth science applications can be supported by GPU computing and help researchers in the Earth science domain better adopt GPU computing (such as supermicro, GPU clusters, and cloud computing-based) for their AI/ML applications, and to optimize their science applications to better leverage the computing device.

Keywords