PLoS ONE (Jan 2013)

Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix.

  • Qin Chen,
  • Wenbin Liu,
  • Krishna M Sinha,
  • Hideyo Yasuda,
  • Benoit de Crombrugghe

DOI
https://doi.org/10.1371/journal.pone.0058104
Journal volume & issue
Vol. 8, no. 3
p. e58104

Abstract

Read online

Osterix (Osx) is an osteoblast-specific transcription factor which is essential for bone formation. MicroRNAs (miRNAs) have been previously shown to be involved in osteogenesis. However, it is unclear whether Osx is involved in the regulation of miRNA expression. In this study, we have identified groups of miRNAs that are differentially expressed in calvaria of the E18.5 Osx(-/-) embryos compared to wild type embryos. The correlation between the levels of miRNAs and Osx expression was further verified in cultured M-Osx cells in which over-expression of Osx is inducible. Our results suggest that Osx down-regulates expression of a group of miRNAs including mir-133a and -204/211, but up-regulates expression of another group of miRNAs such as mir-141/200a. Mir-133a and -204/211 are known to target the master osteogenic transcription factor Runx2. Further assays suggest that Sost, which encodes the Wnt signaling antagonist Sclerostin, and alkaline phosphatase (ALP) are two additional targets of mir-204/211. Mir-141/200a has been known to target the transcription factor Dlx5. Thus, we postulate that during the process of Osx-controlled osteogenesis, Osx has the ability to coordinately modulate Runx2, Sclerostin, ALP and Dlx5 proteins at levels appropriate for optimal osteoblast differentiation and function, at least in part, through regulation of specific miRNAs. Our study shows a tight correlation between Osx and the miRNAs involved in bone formation, and provides new information about molecular mechanisms of Osx-controlled osteogenesis.