AIP Advances (Dec 2011)
Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3
Abstract
We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC – susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magnetization of PCMO10 (∼ 250 kOe) is found to be reduced in comparison with that of bulk PCMO (∼300 kOe). With increasing temperature, the critical magnetic field required to ‘melt’ the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications.