Energies (Nov 2021)

Fuzzy Chaos Control of Fractional Order D-PMSG for Wind Turbine with Uncertain Parameters by State Feedback Design

  • Li Yang,
  • Fuzhao Yang,
  • Weitao Sheng,
  • Kun Zhou,
  • Tianmin Huang

DOI
https://doi.org/10.3390/en14217369
Journal volume & issue
Vol. 14, no. 21
p. 7369

Abstract

Read online

To research the chaotic motion problem of the direct-drive permanent magnet synchronous generator (D-PMSG) for a wind turbine with uncertain parameters and fractional order characteristics, a control strategy established upon fuzzy state feedback is proposed. Firstly, according to the working mechanism of D-PMSG, the Lorenz nonlinear mathematical model is established by affine transformation and time transformation. Secondly, fractional order nonlinear systems (FONSs) are transformed into linear sub-model by Takagi–Sugeno (T-S) fuzzy model. Then, the fuzzy state feedback controller is designed through Parallel Distributed Compensation (PDC) control principle to suppress the chaotic motion. By applying the fractional Lyapunov stability theory (FLST), the sufficient conditions for Mittag–Leffler stability are formulated in the format of linear matrix inequalities (LMIs). Finally, the control performance and effectiveness of the proposed controller are demonstrated through numerical simulations, and the chaotic motions in D-PMSG can be eliminated quickly.

Keywords