Journal of Applied Research in Water and Wastewater (Jun 2014)
Developing a framework for compatibility analysis of predictive climatic variables distribution with reference evapotranspiration in probabilistic analysis of water requirement
Abstract
In this paper, a new framework has been developed for compatibility analysis of predictive climatic variables distribution with reference evapotranspiration (ETo) in probabilistic analysis of water requirement. Initially, measured monthly meteorological data of four cities of Iran including Kerman, Shiraz, Ramsar and Babolsar synoptic weather station recorded from 1961 to 2003 were considered based on De Martonne climate classification. Then monthly ETo was calculated using FAO-Penman-Moentith (FAO-PM), and optimum Probability distribution function (PDF) was determined. The Chow method has been used for frequency analysis, and compatibility analysis was implemented on results. Based on the results, the Generalized Pareto (GP) was selected as optimum PDF for ETo. Results showed that the optimum PDF for minimum and maximum temperature, solar radiation and relative humidity is GP which had compatibility with EToPDF. Eventually, obtained results in compatibility analysis framework were confirmed using Correlation analysis. The proposed methodology developed in this research has application capability in probability scheduling of design water requirement, and can be utilized to optimize probability estimate of water requirement.