Scientific Reports (Dec 2022)

Over-expression of miR-183-5p or miR-492 triggers invasion and proliferation and loss of polarity in non-neoplastic breast epithelium

  • Nataly Naser Al Deen,
  • Nadia Atallah Lanman,
  • Shirisha Chittiboyina,
  • Sabreen Fostok,
  • Rihab Nasr,
  • Sophie Lelièvre,
  • Rabih Talhouk

DOI
https://doi.org/10.1038/s41598-022-25663-8
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 16

Abstract

Read online

Abstract microRNAs (miRNAs) serve as novel noninvasive cancer biomarkers. In an HMT-3522 S1 (S1) breast epithelial risk-progression three-dimensional (3D) culture model, non-neoplastic S1 cells form a fully polarized epithelium. When silenced for the gap junction and tumor suppressor Cx43, Cx43-KO-S1 cells recapitulate pre-neoplastic phenotypes observed in tissues at risk for breast cancer in vivo. To delineate the role of miRNAs in breast tumorigenesis and identify key miRNA players in breast epithelial polarity, the miRNA profile specific to Cx43 loss in Cx43-KO-S1 compared to S1 cells was sequenced, revealing 65 differentially expressed miRNAs. A comparative analysis was conducted between these miRNAs and tumor-associated miRNAs from a young Lebanese patient validation cohort. miR-183-5p, downstream of Cx43 loss, was commonly upregulated in the patient cohort and the 3D culture model. miR-492, not attributed to Cx43 loss, was only specifically up-regulated in the young Lebanese patients. Ectopic expression of either miR-183-5p or miR-492 in S1 cells, through pLenti-III-miR-GPF vectors, resulted in the formation of larger multi-layered acini devoid of lumen, with disrupted epithelial polarity, as shown by an altered localization of Cx43, ß-catenin and Scrib, and decreased nuclear circularity in 3D cultures. Enhanced proliferation and invasion capacity were also observed. Over-expression of miR-183-5p or miR-492, therefore, induces pre-neoplastic phenotypes similar to those reported upon Cx43 loss, and may act as oncomiRs and possible biomarkers of increased breast cancer risk.