International Journal of Molecular Sciences (Nov 2023)

In Silico and In Vitro Study towards the Rational Design of 4,4′-Disarylbisthiazoles as a Selective α-Synucleinopathy Biomarker

  • Bright C. Uzuegbunam,
  • Junhao Li,
  • Wojciech Paslawski,
  • Wolfgang Weber,
  • Per Svenningsson,
  • Hans Ågren,
  • Behrooz Hooshyar Yousefi

DOI
https://doi.org/10.3390/ijms242216445
Journal volume & issue
Vol. 24, no. 22
p. 16445

Abstract

Read online

The α-synucleinopathies are a group of neurodegenerative diseases characterized by the deposition of α-synuclein aggregates (α-syn) in the brain. Currently, there is no suitable tracer to enable a definitive early diagnosis of these diseases. We reported candidates based on 4,4′-disarylbisthiazole (DABTA) scaffold with a high affinity towards α-syn and excellent selectivity over Aβ and tau fibrils. Based on prior in silico studies, a focused library of 23 halogen-containing and O-methylated DABTAs was prepared. The DABTAs were synthesized via a modified two-step Hantzsch thiazole synthesis, characterized, and used in competitive binding assays against [3H]PiB and [3H]DCVJ. The DABTAs were obtained with an overall chemical yield of 15–71%, and showed a calculated lipophilicity of 2.5–5.7. The ligands demonstrated an excellent affinity to α-syn with both [3H]PiB and [3H]DCVJ: Ki 0.1–4.9 nM and up to 20–3900-fold selectivity over Aβ and tau fibrils. It could be concluded that in silico simulation is useful for the rational design of a new generation of DABTAs. Further investigation of the leads in the next step is encouraged: radiolabeling of the ligands with radioisotopes such as fluorine-18 or carbon-11 for in vivo, ex vivo, and translational research and for further in vitro experiments on human-derived protein aggregates.

Keywords