Sensors (Aug 2024)
Absolute and Relative Reliability of Spatiotemporal Gait Characteristics Extracted from an Inertial Measurement Unit among Senior Adults Using a Passive Hip Exoskeleton: A Test–Retest Study
Abstract
Background: Seniors wearing a passive hip exoskeleton (Exo) show increased walking speed and step length but reduced cadence. We assessed the test–retest reliability of seniors’ gait characteristics with Exo. Methods: Twenty seniors walked with and without Exo (noExo) on a 10 m indoor track over two sessions separated by one week. Speed, step length, cadence and step time variability were extracted from one inertial measurement unit (IMU) placed over the L5 vertebra. Relative and absolute reliability were assessed using the intraclass correlation coefficient (ICC), standard error of measurement (SEM) and minimal detectable change (MDC). Results: The relative reliability of speed, step length, cadence and step time variability ranged from “almost perfect to substantial” for Exo and noExo with ICC values between 0.75 and 0.87 and 0.60 and 0.92, respectively. The SEM and MDC values for speed, step length cadence and step time variability during Exo and noExo were <0.002 and <0.006 m/s, <0.002 and <0.005 m, <0.30 and <0.83 steps/min and <0.38 s and <1.06 s, respectively. Conclusions: The high test–retest reliability of speed, step length and cadence estimated from IMU suggest a robust extraction of spatiotemporal gait characteristics during exoskeleton use. These findings indicate that IMUs can be used to assess the effects of wearing an exoskeleton on seniors, thus offering the possibility of conducting longitudinal studies.
Keywords