Applied Sciences (Feb 2022)

Application of Chromatographic and Thermal Methods to Study Fatty Acids Composition and Positional Distribution, Oxidation Kinetic Parameters and Melting Profile as Important Factors Characterizing Amaranth and Quinoa Oils

  • Magdalena Wirkowska-Wojdyła,
  • Ewa Ostrowska-Ligęza,
  • Agata Górska,
  • Joanna Bryś

DOI
https://doi.org/10.3390/app12042166
Journal volume & issue
Vol. 12, no. 4
p. 2166

Abstract

Read online

Amaranth and quinoa are classed as pseudocereals that do not belong to the grass family, meaning they are not technically a grain. Both of them are seeds with tremendous nutritional value; compared to other cereals, they contain much more fat. The aim of the study was to present the parameters characterizing thermal properties of amaranth and quinoa oils, such as: oxidation induction time, oxidation kinetic parameters, and melting profile. In isolated oils, the peroxide value, oxidative stability by the Rancimat test (in 120 °C) and the pressure differential scanning calorimetry (PDSC) method (at 100, 110, 120, 130, 140 °C), fatty acids composition, and their distribution between the triacylglycerol positions were determined. The kinetic parameters of the oxidation process (activation energy, pre-exponential factor, and reaction rate constants) were calculated using the Ozawa–Flynn–Wall method and the Arrhenius equation. To measure the melting profile, the differential scanning calorimetry (DSC) method was used. Both types of seeds are a good source of unsaturated fatty acids. Induction time of oxidation suggests that amaranth oil may have better resistance to oxidation than quinoa oil. The melting characteristics of the oils show the presence of low-melting triacylglycerol fractions, mainly containing unsaturated fatty acids, which means that a small amount of energy is required to melt the fats.

Keywords