PLoS Biology (Nov 2010)

A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons.

  • Jin-Yong Park,
  • Stefan Remy,
  • Juan Varela,
  • Donald C Cooper,
  • Sungkwon Chung,
  • Ho-Won Kang,
  • Jung-Ha Lee,
  • Nelson Spruston

DOI
https://doi.org/10.1371/journal.pbio.1000534
Journal volume & issue
Vol. 8, no. 11
p. e1000534

Abstract

Read online

Activation of group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5) regulates neural activity in a variety of ways. In CA1 pyramidal neurons, activation of group I mGluRs eliminates the post-burst afterhyperpolarization (AHP) and produces an afterdepolarization (ADP) in its place. Here we show that upregulation of Ca(v)2.3 R-type calcium channels is responsible for a component of the ADP lasting several hundred milliseconds. This medium-duration ADP is rapidly and reversibly induced by activation of mGluR5 and requires activation of phospholipase C (PLC) and release of calcium from internal stores. Effects of mGluR activation on subthreshold membrane potential changes are negligible but are large following action potential firing. Furthermore, the medium ADP exhibits a biphasic activity dependence consisting of short-term facilitation and longer-term inhibition. These findings suggest that mGluRs may dramatically alter the firing of CA1 pyramidal neurons via a complex, activity-dependent modulation of Ca(v)2.3 R-type channels that are activated during spiking at physiologically relevant rates and patterns.