International Journal of Nanomedicine (Nov 2018)

A review on nanosystems as an effective approach against infections of Staphylococcus aureus

  • Zhou KX,
  • Li C,
  • Chen DM,
  • Pan YH,
  • Tao YF,
  • Qu W,
  • Liu ZL,
  • Wang XF,
  • Xie SY

Journal volume & issue
Vol. Volume 13
pp. 7333 – 7347

Abstract

Read online

Kaixiang Zhou,1 Chao Li,1 Dongmei Chen,2 Yuanhu Pan,1 Yanfei Tao,2 Wei Qu,2 Zhenli Liu,2 Xiaofang Wang,3 Shuyu Xie1 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; 2National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China; 3Animal Husbandry and Veterinary Institute of Hebei Province, Baoding, Hebei, China Abstract: Staphylococcus aureus (S. aureus) is an important zoonotic bacteria and hazardous for the health of human beings and livestock globally. The characteristics like biofilm forming, facultative intracellular survival, and growing resistance of S. aureus pose a great challenge to its use in therapy. Nanoparticles are considered as a promising way to overcome the infections’ therapeutic problems caused by S. aureus. In this paper, the present progress and challenges of nanoparticles in the treatment of S. aureus infection are focused on stepwise. First, the survival and infection mechanism of S. aureus are analyzed. Second, the treatment challenges posed by S. aureus are provided, which is followed by the third step including the advantages of nanoparticles in improving the penetration and accumulation ability of their payload antibiotics into cell, inhibiting S. aureus biofilm formation, and enhancing the antibacterial activity against resistant isolates. Finally, the challenges and future perspective of nanoparticles for S. aureus infection therapy are introduced. This review will help the readers to realize that the nanosystems can effectively fight against the S. aureus infection by inhibiting biofilm formation, enhancing intracellular delivery, and improving activity against methicillin-resistant S. aureus and small colony variant phenotypes as well as aim to help researchers looking for more efficient nanosystems to combat the S. aureus infections. Keywords: Staphylococcus aureus, infection mechanism, resistance, antibiotics, nanoparticles

Keywords