Molecules (Dec 2023)

Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies

  • Jarid du Plooy,
  • Branham Kock,
  • Nazeem Jahed,
  • Emmanuel Iwuoha,
  • Keagan Pokpas

DOI
https://doi.org/10.3390/molecules28248022
Journal volume & issue
Vol. 28, no. 24
p. 8022

Abstract

Read online

The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.

Keywords