Energies (Jan 2019)

Control Strategies in Multi-Zone Air Conditioning Systems

  • Behzad Rismanchi,
  • Juan Mahecha Zambrano,
  • Bryan Saxby,
  • Ross Tuck,
  • Mark Stenning

DOI
https://doi.org/10.3390/en12030347
Journal volume & issue
Vol. 12, no. 3
p. 347

Abstract

Read online

In a commercial building, a significant amount of energy is used by the ventilation systems to condition the air for the ‎indoor environments to satisfy the required quantity (temperature ‎and humidity) and quality (amount of fresh air). For many years, Variable Air Volume ‎‎(VAV) systems have been considered as the most efficient solutions by balancing the airflow volume based on the demand making them energy efficient when compared with the traditional Constant Air Volume (CAV) systems. However, the setpoints in VAV systems are ‎often misread by the sensors due to stratification and formation of pollutant pockets and ‎responding to design levels that overestimate the real-time demand conditions, which result in ‎waste of energy, thermal discomfort and unhealthy air. In general, VAV devices are expensive, complicated and prone to failures and ‎they are used only in medium and large projects. More recently, new technologies have evolved to solve this issue. In one of the new solutions, VAV motors terminals are replaced with flaps which are simpler and less expensive thus, they can be implemented ‎in a wider range of projects. In systems, balancing and supplying the optimal airflow ‎to reduce the energy consumption while delivering ideal thermal and Indoor Air Quality (IAQ) levels are the ‎main challenges. In this paper, a comparison of the recent technologies with traditional VAV systems is presented to be used as a guild line for researchers and designers in the field of Heating Ventilation Air Conditioning (HVAC)‎.

Keywords