APL Materials (Mar 2020)
Antiferromagnetic and dielectric behavior in polycrystalline GdFe0.5Cr0.5O3 thin film
Abstract
Single phase materials with both spontaneous electric polarization and magnetization are rare, despite remarkable efforts in developing magnetoelectric multiferroics. In this work, a single-phase polycrystalline GdFe0.5Cr0.5O3 (GFCO) thin film was spin-coated onto a platinized silicon substrate. X-ray diffraction data suggest that the film exhibits an orthorhombic perovskite structure with a Pbnm space group. No other impurity phases were detected. Magnetization measurements reveal the Néel temperature of the GFCO film to be ∼220 K and illustrate a weak ferromagnetic component at 5 K, which could be due to spin canting. Frequency dependent ferroelectric–paraelectric transition was observed around 480 K, indicating the diffuse relaxor-like behavior. The electric field dependent polarization measurements show a lossy behavior below 200 K. The electric field dependent dielectric constant (tunability) measured at 1 MHz in a wide temperature range reveals that the tunability maximizes near the observed dielectric maxima, which further confirms the ferroelectric to paraelectric transition in the present film.