International Journal of Preventive Medicine (Jan 2021)

Selenium, Zinc, and Copper Status in Euthyroid Nodular Goiter: A Cross-Sectional Study

  • Elif Turan,
  • Vugar Ali Turksoy

DOI
https://doi.org/10.4103/ijpvm.IJPVM_337_19
Journal volume & issue
Vol. 12, no. 1
pp. 46 – 46

Abstract

Read online

Background: It is known that some elements are needed for normal thyroid gland functions. Iodine and selenium are the most well-known trace elements necessary for thyroid metabolism. Selenium is involved in the formation of thyroid hormones and the structure of the deiodinases associated with the development of the thyroid gland. While the role of zinc in thyroid metabolism is at the T3 receptor level, the role of copper is yet not clear. Objective: To compare the levels of serum trace elements such as selenium, zinc, and copper between the patients with euthyroid nodular goiter and healthy participants. Methods: This cross-sectional study included 98 patients with euthyroid multinodular goiter and 83 healthy subjects without thyroid disease. The demographics, thyroid hormone levels, and thyroid ultrasonography of the participants were recorded. Venous blood samples were centrifuged and sera samples were stored at -80°C until analysis of selenium, zinc, and copper levels. The levels of trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results: While serum, zinc, and selenium levels were significantly higher in the control group than the nodular goiter group, the copper levels were similar in the two groups. Trace elements were not correlated with thyroid hormone levels and thyroid volumes. Patients in the nodular goiter group were analyzed according to their solitary and multiple nodule status. The solitary and multiple nodular goiter groups were similar in terms of copper, zinc, and selenium levels. Conclusions: Deficiency of selenium and zinc may be associated with nodular goiter. Replacement of these trace elements may be useful for the prevention of nodular goiter, especially in deficient regions.

Keywords