Plants (Mar 2023)

Monitoring Drought Stress in Common Bean Using Chlorophyll Fluorescence and Multispectral Imaging

  • Tomislav Javornik,
  • Klaudija Carović-Stanko,
  • Jerko Gunjača,
  • Monika Vidak,
  • Boris Lazarević

DOI
https://doi.org/10.3390/plants12061386
Journal volume & issue
Vol. 12, no. 6
p. 1386

Abstract

Read online

Drought is a significant constraint in bean production. In this study, we used high-throughput phenotyping methods (chlorophyll fluorescence imaging, multispectral imaging, 3D multispectral scanning) to monitor the development of drought-induced morphological and physiological symptoms at an early stage of development of the common bean. This study aimed to select the plant phenotypic traits which were most sensitive to drought. Plants were grown in an irrigated control (C) and under three drought treatments: D70, D50, and D30 (irrigated with 70, 50, and 30 mL distilled water, respectively). Measurements were performed on five consecutive days, starting on the first day after the onset of treatments (1 DAT–5 DAT), with an additional measurement taken on the eighth day (8 DAT) after the onset of treatments. Earliest detected changes were found at 3 DAT when compared to the control. D30 caused a decrease in leaf area index (of 40%), total leaf area (28%), reflectance in specific green (13%), saturation (9%), and green leaf index (9%), and an increase in the anthocyanin index (23%) and reflectance in blue (7%). The selected phenotypic traits could be used to monitor drought stress and to screen for tolerant genotypes in breeding programs.

Keywords